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Для решения задач популяционной динамики на основе уравнений реакции –
диффузии – адвекции, учитывающих направленную миграцию на ресурс и конку-
ренцию видов, предложена компактная схема метода конечных разностей с дис-
кретизацией, использующей смещенные сетки по пространственной координате.
Реализована схема метода прямых с аппроксимацией по пространству на трехто-
чечном шаблоне и использованием интеграторов по времени высокого порядка.
Проведены вычислительные эксперименты для нелинейных уравнений с перемен-
ными коэффициентами при различных граничных условиях. Представлены ре-
зультаты расчетов задач с точными решениями для оценки точности и порядка
аппроксимации. Продемонстрирована эффективность данной схемы для расчета
динамики трех конкурирующих за неоднородный ресурс видов.
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Введение

Проведение вычислительного эксперимента для систем популяционной динамики при
нечетко определенных значениях параметров требует расчета большого количества ва-
риантов. Для решения уравнений реакции – диффузии – адвекции, описывающих пове-
дение конкурирующих видов, эффективным представляется использование аппрокси-
маций повышенного порядка точности, развитых для решения задач математической
физики [1–3].

Компактные схемы [2] обеспечивают хорошее качество построенных на стандарт-
ных шаблонах разностных аппроксимаций и высокую эффективность численных алго-
ритмов. Развитие получили также бикомпактные схемы [4] и мультиоператорный ме-
тод [3, 5]. Так, для уравнений Эйлера и Навье –Стокса предложены компактные раз-
ностные схемы, обладающие высокими порядками аппроксимации [6]. В [7] представлен
обзор работ по численным методам повышенной точности, предназначенным для расче-
та разрывных решений гиперболических систем. В [8] предложен симбиоз компактных
схем и специальных адаптивных сеток, явно задаваемых на основе априорных оценок
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производных решения. Эффективная двухслойная безытерационная схема четвертого
порядка точности для двумерного уравнения Гинзбурга –Ландау разработана в [9].

Современное состояние развития разностных схем повышенного порядка точности
представлено в работах [10–12]. В частности, разработаны алгоритмы компактных схем
для решения нелинейных уравнений адвекции – диффузии [10], трехмерных задач на
неравномерной сетке [11], уравнений реакции – диффузии с переменными коэффициен-
тами [12]. Применение схем повышенного порядка точности для проблем математичес-
кой биологии встречается достаточно редко. В [13, 14] исследованы монотонные раз-
ностные схемы для уравнений Колмогорова –Петровского –Пискунова –Фишера и Бюр-
герса –Фишера, обеспечивающие четвертый порядок по пространственной координате
и второй — по времени.

В данной работе для решения нелинейных уравнений динамики конкурирующих
видов используется метод прямых. Дискретизация одномерных по пространственной
переменной задач проводится на компактном трехточечном шаблоне с применением
смещенной сетки для вычисления потоков. Для интегрирования по времени применя-
ется метод Рунге –Кутты высокого порядка.

1. Математическая модель конкурирующих видов

Для описания пространственно-временного взаимодействия конкурирующих видов ис-
пользуются уравнения реакции – диффузии – адвекции. В случае одномерного ареала
математическая модель может быть записана в виде системы уравнений относительно
плотностей 𝑢𝑖(𝑥, 𝑡), 𝑥 ∈ Ω, потоков 𝑞𝑖 и локальных реакций 𝑔𝑖, 𝑖 = 1, . . . ,𝑚, [15]

𝑢̇𝑖 = −𝑞′𝑖 + 𝑔𝑖, 𝑞𝑖 = −𝑘𝑖𝑢
′
𝑖 + 𝑢𝑖𝜙

′
𝑖, 𝑔𝑖 = 𝑟𝑖𝑢𝑖

(︃
1− 1

𝑝(𝑥)

𝑚∑︁
𝑗=1

𝛼𝑖𝑗𝑢𝑗(𝑥, 𝑡)

)︃
, (1)

где штрихом обозначена производная по 𝑥, а точкой — дифференцирование по време-
ни 𝑡. В выражении для потоков 𝑞𝑖 первое слагаемое характеризует диффузию, а вто-
рое — отвечает за направленную миграцию (таксис). Функция 𝜙𝑖 состоит из двух час-
тей, которые определяют различные виды направленной миграции: таксис на ресурс
𝑝 = 𝑝(𝑥) и от мест с избыточным скоплением видов.

𝜙𝑖 = 𝑎𝑖𝑝+
𝑚∑︁
𝑗=1

𝑏𝑖𝑗𝑢𝑗, 𝑖 = 1, . . . ,𝑚. (2)

В уравнениях потоков коэффициенты 𝑘𝑖, 𝑎𝑖, 𝑏𝑖𝑗 (𝑖, 𝑗 = 1, . . . ,𝑚) являются величина-
ми, значения которых определяются из данных наблюдения. Функция 𝑝(𝑥) описывает
неравномерное распределение ресурса вдоль ареала. В функциях 𝑔𝑖, описывающих ло-
кальное взаимодействие, 𝑟𝑖 есть параметр линейного роста, а коэффициенты 𝛼𝑖𝑗 харак-
теризуют влияние вида 𝑗 на рост вида 𝑖.

Система (1), (2) дополняется краевыми условиями при 𝑥 = 0 и 𝑥 = 𝑎, ниже рассмот-
рены примеры для условий трех типов. Начальные условия задаются для плотностей
вида

𝑢𝑖(𝑥, 0) = 𝑢0
𝑖 (𝑥), 𝑖 = 1, . . . ,𝑚. (3)
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Для системы (1)–(3) возможны различные решения: стационарные распределения, бегу-
щие волны. При дополнительных соотношениях на параметры может возникать муль-
тистабильность в виде семейств стационарных (𝑚 > 1) и нестационарных (𝑚 > 2)
решений [16].

2. Разностная схема повышенного порядка точности

Для дискретизации (1) по пространственной координате [1] перепишем уравнения, вве-
дя обозначение 𝐹𝑖 для разности реакции 𝑔𝑖 и производной от плотности:

− 𝑞′𝑖 + 𝐹𝑖 = 0, 𝐹𝑖 = −𝑢̇𝑖 + 𝑔𝑖 (4)

𝑞𝑖 + 𝑘𝑖𝑢
′
𝑖 − 𝑢𝑖𝜙

′
𝑖 = 0, 𝑖 = 1, . . . ,𝑚. (5)

В случае краевых условий Дирихле на отрезке [0, 𝑎] вводится равномерная сетка 𝑥𝑠 =
𝑠ℎ, 𝑠 = 0, . . . , 𝑛, ℎ = 𝑎/𝑛. При вычислении потоков используется вспомогательная сетка
𝑥𝑠−1/2 = 𝑠ℎ−ℎ/2, 𝑠 = 1, . . . , 𝑛. Далее определяются операторы разностной производной
и вычисления среднего

(𝑑𝑦)𝑠=
𝑦𝑠+1/2−𝑦𝑠−1/2

ℎ
, (𝛿𝑦)𝑠=

𝑦𝑠+1/2+𝑦𝑠−1/2

2
, (𝑑𝑦)𝑠−1/2=

𝑦𝑠−𝑦𝑠−1

ℎ
, (𝛿𝑦)𝑠−1/2=

𝑦𝑠+𝑦𝑠−1

2
.

Для аппроксимации системы уравнений (4), (5) по пространственной координате при-
меняется метод баланса [1].

Интегрируя (5) по отрезку [𝑥𝑠−1, 𝑥𝑠], получаем

𝑞𝑖,𝑠−1/2 = −𝑘𝑖(𝑑𝑢𝑖)𝑠−1/2 + (𝛿𝑢𝑖)𝑠−1/2(𝑑𝜙𝑖)𝑠−1/2.

С учетом (2) имеем

𝑞𝑖,𝑠−1/2 =

(︃
−𝑘𝑖𝑑𝑢𝑖 + 𝑎𝑖𝑑𝑝𝛿𝑢𝑖 + 𝛿𝑢𝑖

𝑚∑︁
𝑗=1

𝑏𝑖𝑗𝑑𝑢𝑗

)︃
𝑠−1/2

, 𝑖 = 1, . . . ,𝑚.

Интегрируем (4) по отрезку [𝑥𝑠−1/2, 𝑥𝑠+1/2] и применяем квадратурную формулу Симп-
сона

0=

𝑥𝑠+1/2∫︁
𝑥𝑠−1/2

(−𝑞′𝑖+𝐹𝑖)𝑑𝑥≈−𝑞𝑖(𝑥𝑠+1/2)+𝑞𝑖(𝑥𝑠−1/2)+(𝑥𝑠+1/2−𝑥𝑠−1/2)

(︂
1

6
𝐹𝑖,𝑠−1/2+

2

3
𝐹𝑖,𝑠+

1

6
𝐹𝑖,𝑠+1/2

)︂
.

Для вычисления 𝐹 в узлах смещенной сетки 𝑥𝑠−1/2 используем полусумму 𝐹𝑖,𝑠−1 и 𝐹𝑖,𝑠.
В результате имеем

(𝑑𝑞𝑖)𝑠 =
1

12
(𝐹𝑖,𝑠−1 + 10𝐹𝑖,𝑠 + 𝐹𝑖,𝑠+1), 𝑠 = 1, . . . , 𝑛− 1. (6)

С использованием второй разностной производной

Λ𝑦𝑠 =
𝑦𝑠+1 − 2𝑦𝑠 + 𝑦𝑠−1

ℎ2
, 𝑠 = 1, . . . , 𝑛− 1,

перепишем уравнение (6)(︂
𝐸 +

ℎ2

12
Λ

)︂
𝑢̇𝑖,𝑠 = −(𝑑𝑞𝑖)𝑠 +

(︂
𝐸 +

ℎ2

12
Λ

)︂
𝑔𝑖,𝑠, 𝑖 = 1, . . . ,𝑚, 𝑠 = 1, . . . , 𝑛, (7)

где 𝐸 — единичная матрица и
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𝑔𝑖,𝑠 = 𝑟𝑖𝑢𝑖,𝑠

(︃
1− 1

𝑝𝑠

𝑚∑︁
𝑗=1

𝛼𝑖𝑗𝑢𝑗,𝑠

)︃
, 𝑝𝑠 =

⎛⎜⎝1

ℎ

𝑥𝑠+1/2∫︁
𝑥𝑠−1/2

𝑑𝑥

𝑝(𝑥)

⎞⎟⎠
−1

.

В результате дискретизации по пространственной переменной получается система
обыкновенных дифференциальных уравнений с неизвестными 𝑢𝑖,𝑠(𝑡), соответствующи-
ми плотности распределения популяции 𝑢𝑖 в узле 𝑥𝑠. Построенная конечномерная мо-
дель (6), (7) может быть записана в виде

Ẇ = Φ(W), W(0) = W0, (8)

здесь W = (𝑢1,1, . . . , 𝑢1,𝑛, . . . , 𝑢𝑚,𝑛) — вектор значений переменных в узлах сетки. При-
меры построения Φ(W) даны ниже. Начальные данные для системы (8) следуют из (3):

W0 = (𝑢0
1,1, . . . , 𝑢

0
1,𝑛, . . . , 𝑢

0
𝑚,𝑛).

Для интегрирования cиcтемы (8) по времени иcпользуетcя метод Pунге –Кутты высо-
кого порядка (интегратор по времени ode89 из MATLAB).

3. Диффузия популяции на неоднородном ареале

Рассмотрим применение описанного подхода для решения задачи диффузионного рас-
пространения одного вида (𝑢 ≡ 𝑢1, 𝑘 = 𝑘1, 𝜙1 = 0) на неоднородном ареале [0, 𝑎]

𝑢̇ = 𝑘𝑢′′ + 𝑔, 𝑔(𝑥, 𝑢) = 𝑟𝑢

(︂
1− 𝑢

𝑝(𝑥)

)︂
. (9)

Вычислительные эксперименты проводились для трех типов краевых условий:
1) Дирихле

𝑢(0, 𝑡) = 𝑢(𝑎, 𝑡) = 0; (10)

2) Неймана (отсутствие потоков)

𝑢′(0, 𝑡) = 𝑢′(𝑎, 𝑡) = 0; (11)

3) периодичности
𝑢(0, 𝑡) = 𝑢(𝑎, 𝑡), 𝑢′(0, 𝑡) = 𝑢′(𝑎, 𝑡). (12)

В случае задачи Дирихле (10) схема повышенного порядка точности следует из (7)
и (9) (︂

𝑢̇+
ℎ2

12
Λ𝑢̇

)︂
𝑠

=

(︂
𝑘Λ𝑢+ 𝑔 +

ℎ2

12
Λ𝑔

)︂
𝑠

, 𝑠 = 1, . . . , 𝑛− 1, 𝑢0 = 𝑢𝑛 = 0.

Соответствующая система обыкновенных дифференциальных уравнений может быть
записана в векторном виде

𝑀U̇ = 𝑘𝐿U+𝑀𝐺(U), (13)

здесь

U = (𝑢1, . . . , 𝑢𝑛−1)
𝑇 , 𝐺(U) = (𝑔1, . . . , 𝑔𝑛−1), 𝑔𝑠 = 𝑟𝑢𝑠

(︂
1− 𝑢𝑠

𝑝(𝑥𝑠)

)︂
,

а квадратные матрицы 𝑀 и 𝐿 размера (𝑛− 1)2 имеют вид
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𝑀 =
1

12

⎡⎢⎢⎢⎢⎢⎣
10 1 · · · 0 0
1 10 · · · 0 0
...

...
. . .

...
...

0 0 · · · 10 1
0 0 · · · 1 10

⎤⎥⎥⎥⎥⎥⎦ , 𝐿 =
1

ℎ2

⎡⎢⎢⎢⎢⎢⎣
−2 1 · · · 0 0
1 −2 · · · 0 0
...

...
. . .

...
...

0 0 · · · −2 1
0 0 · · · 1 −2

⎤⎥⎥⎥⎥⎥⎦ . (14)

Аналогично [1, 13] показывается, что задача (13), (14) обеспечивает четвертый поря-
док аппроксимации по ℎ (сокращенно далее обозначается PC4). В случае единичной
матрицы 𝑀 получается разностная схема второго порядка точности (PC2) [1].

Для условий периодичности (12) и сетки из 𝑛 узлов 𝑥𝑠 = 𝑠ℎ, 𝑠 = 0, . . . , 𝑛−1, ℎ = 1/𝑛,
имеем U = (𝑢1, . . . , 𝑢𝑛)

𝑇 , 𝑢0 = 𝑢𝑛, 𝐺(U) = (𝑔1, . . . , 𝑔𝑛), матрицы 𝑀 , 𝐿 размера 𝑛2 имеют
вид

𝑀 =
1

12

⎡⎢⎢⎢⎢⎢⎣
10 1 · · · 0 1
1 10 · · · 0 0
...

...
. . .

...
...

0 0 · · · 10 1
1 0 · · · 1 10

⎤⎥⎥⎥⎥⎥⎦ , 𝐿 =
1

ℎ2

⎡⎢⎢⎢⎢⎢⎣
−2 1 · · · 0 1
1 −2 · · · 0 0
...

...
. . .

...
...

0 0 · · · −2 1
1 0 · · · 1 −2

⎤⎥⎥⎥⎥⎥⎦ .

Для задачи Неймана сетка строится таким образом, чтобы на границе располагались
узлы для потоков 𝑥𝑠 = (𝑠− 1/2)ℎ, 𝑠 = 0, . . . , 𝑛 + 1, ℎ = 1/𝑛, и дополнительно вводятся
законтурные узлы для плотности 𝑢(𝑥, 𝑡). Из условия (11) примем с точностью 𝒪(ℎ2)

𝑢0 = 𝑢1, 𝑢𝑛+1 = 𝑢𝑛, 𝑔0 = 𝑔1, 𝑔𝑛+1 = 𝑔𝑛.

Тогда для узла 𝑠 = 1 имеем

1

12
(𝑢̇2 + 11𝑢̇1) = 𝑘

𝑢2 − 𝑢1

ℎ2
+

1

12
(𝑔2 + 11𝑔1).

Аналогично получается формула для 𝑠=𝑛. Задача для внутренних узловU=(𝑢1, . . . , 𝑢𝑛)
записывается с помощью матриц порядка 𝑛2

𝑀 =
1

12

⎡⎢⎢⎢⎢⎢⎣
11 1 · · · 0 0
1 10 · · · 0 0
...

...
. . .

...
...

0 0 · · · 10 1
0 0 · · · 1 11

⎤⎥⎥⎥⎥⎥⎦ , 𝐿 =
1

ℎ2

⎡⎢⎢⎢⎢⎢⎣
−1 1 · · · 0 0
1 −2 · · · 0 0
...

...
. . .

...
...

0 0 · · · −2 1
0 0 · · · 1 −1

⎤⎥⎥⎥⎥⎥⎦ .

Для сравнения схем рассматриваются задачи с решениями, задаваемыми явно. Ста-
ционарному решению уравнения (9) 𝑤(𝑥) отвечает функция ресурса 𝑝(𝑥)

𝑝(𝑥) = 𝑤(𝑥)

(︂
1 +

𝑘𝑤′′(𝑥)

𝑟𝑤(𝑥)

)︂−1

. (15)

В качестве решений для задач с условиями Дирихле (10), Неймана (11) и периодичнос-
ти (12) соответственно берутся распределения (рис. 1)

𝑤1(𝑥) = 0.1 sin𝜋𝑥+ 0.09 sin 2𝜋𝑥+ 0.03 sin 3𝜋𝑥,

𝑤2(𝑥) = 1 + 0.4 cos𝜋𝑥+ 0.3 cos 2𝜋𝑥− 0.05 cos 3𝜋𝑥,

𝑤3(𝑥) = 1 + 0.5 sin 2𝜋𝑥+ 0.1 sin 4𝜋𝑥. (16)
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а б в

Рис. 1. Распределение стационарного решения 𝑤(𝑥) и ресурса 𝑝(𝑥) для задач с условиями
Дирихле (а), Неймана (б ) и периодичности (в)
Fig. 1. Distributions of stationary solution 𝑤(𝑥) and resource 𝑝(𝑥) for problems with Dirichlet (а),
Neumann (б ) and periodicity conditions (в)

Т а б л и ц а 1. Сходимость метода конечных
разностей и рассчитанный порядок точности
для задачи Дирихле
Table 1. Convergence of the finite difference
method and the calculated accuracy order for the
Dirichlet problem

ℎ ‖𝑌2 − 𝑤1‖ ‖𝑌4 − 𝑤1‖ 𝜂(PC2) 𝜂(PC4)

0.2 0.07354 0.01402 − −
0.1 0.02442 0.00114 2.12 4.15

0.05 0.00835 0.000097 2.05 4.05

0.025 0.0029 0.00004 2.01 4.00

Т а б л и ц а 2. Сходимость метода конечных
разностей и рассчитанный порядок точности
для задачи Неймана
Table 2. Convergence of the finite difference
method and the calculated accuracy order for the
Neumann problem

ℎ ‖𝑌2 − 𝑤2‖ ‖𝑌4 − 𝑤2‖ 𝜂(PC2) 𝜂(PC4)

0.2 0.0343 0.00413 − −
0.0667 0.0065 0.000002 2.02 4.04

0.0222 0.0013 0.000002 1.99 3.94

Т а б л и ц а 3. Сходимость метода конечных разностей и рассчитанный порядок точности
для задачи с условиями периодичности
Table 3. Convergence of the finite difference method and the calculated accuracy order for the
problem with periodicity conditions

ℎ ‖𝑌2 − 𝑤3‖ ‖𝑌4 − 𝑤3‖ 𝜂(PC2) 𝜂(PC4)

0.2 0.1138 0.02989 − −
0.1 0.0381 0.00232 2.06 4.19

0.05 0.0131 0.00019 2.03 4.07

0.025 0.0029 0.00004 2.00 4.08

Далее для параметров диффузии 𝑘 = 0.05 и роста 𝑟 = 2.5 проводятся численный
эксперимент на установление к стационарному состоянию и сравнение полученных ре-
зультатов с точными решениями.

На рис. 1 представлены графики 𝑤𝑖(𝑥) и 𝑝(𝑥) для каждой задачи. В табл. 1–3 при-
ведены нормы разности численного и точного решений в узлах используемой сетки.
Символами 𝑌2, 𝑌4 обозначены решения, полученные методом второго и четвертого по-
рядков точности. В двух последних столбцах представлены значения порядка метода,
рассчитанные на основе схемы Рунге. По результатам расчетов на сетках ℎ и ℎ/𝜔 (𝜔 = 2
для задачи Дирихле и с условиями периодичности, 𝜔 = 3 для задачи Неймана) порядок
определяется по формуле

𝜂 = log𝜔
𝜁(ℎ)

𝜁(ℎ/𝜔)
, 𝜁(ℎ) = ‖𝑌 (ℎ)− 𝑤‖.
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Из табл. 1 видно, что для задачи с одним максимумом функции ресурса метод чет-
вертого порядка точности позволяет получить на сетке из десяти узлов распределение,
которое находится при 40 узлах на основе схемы PC2. Уменьшение шага разностной
схемы PC4 после ℎ = 0.05 не дает увеличения точности. Это связано с тем, что уста-
новление рассчитывалось методом Рунге –Кутты с автоматическим выбором шага по
времени, при этом были заданы следующие значения относительной и абсолютной по-
грешностей соответственно 𝜀𝑟𝑒𝑙 = 10−7, 𝜀𝑎𝑏𝑠 = 10−6.

Для схемы с краевыми условиями Дирихле и для задачи с условиями периодичности
деление шага пополам позволяет оценивать разности значений в общих узлах. Для
схемы с условиями Неймана общие узлы получаются для сеток с ℎ и ℎ/3 (см. табл. 2).

4. Схема повышенного порядка точности для системы трех видов

Описанный подход был использован для решения задачи о конкуренции трех видов [15]
на неоднородном ареале [0, 1]

𝑢̇𝑖 = (𝑘𝑖𝑢
′
𝑖 − 𝑎𝑖𝑢𝑖𝑝

′)′ + 𝑔𝑖, 𝑔𝑖 = 𝑟𝑖𝑢𝑖

(︃
1− 1

𝑝(𝑥)

3∑︁
𝑗=1

𝑢𝑗

)︃
, 𝑖 = 1, . . . , 3, (17)

при условиях периодичности

𝑢𝑖(0, 𝑡) = 𝑢𝑖(1, 𝑡), 𝑘𝑖𝑢
′
𝑖(0, 𝑡)− 𝑎𝑖𝑢𝑖(0, 𝑡)𝑝

′(0) = 𝑘𝑖𝑢
′
𝑖(1, 𝑡)− 𝑎𝑖𝑢𝑖(1, 𝑡)𝑝

′(1). (18)

В бездиффузионном приближении 𝑘𝑖 = 0 и при однородном ресурсе 𝑝(𝑥) = 𝑝0 зада-
ча (17), (18) сводится к системе обыкновенных дифференциальных уравнений, которая
имеет двухпараметрическое семейство стационарных решений [17]

𝑢1 = (1− 𝜃2 − 𝜃3)𝑝0, 𝑢2 = 𝜃2𝑝0, 𝑢3 = 𝜃3𝑝0. (19)

Это является следствием мультикосимметрии задачи, т. е. существует косимметрия —
вектор с произвольным параметром 𝜈:

L𝜈 = ((1− 𝜈)𝑟2𝑢2 + 𝜈𝑟3𝑢3,−(1− 𝜈)𝑟1𝑢1,−𝜈𝑟1𝑢1)
𝑇 . (20)

Непосредственной проверкой устанавливается ортогональность L𝜈 вектору правой час-
ти (17). При этом косимметрия L𝜈 не аннулируется на равновесиях семейства (19) [18].

При неоднородном ресурсе 𝑝(𝑥) для 𝑟1 = 1, 𝑘𝑖 = 𝑟𝑖𝑘1, 𝑎𝑖 = 𝑟𝑖𝑎1 (𝑖 = 2, 3) система
также имеет мультикосимметрию (20) и двухпараметрическое семейство стационарных
решений:

𝑢1 = (1− 𝜃2 − 𝜃3)𝑤(𝑥), 𝑢2 = 𝜃2𝑤(𝑥), 𝑢3 = 𝜃3𝑤(𝑥),

где 𝑤(𝑥) является решением следующей краевой задачи:

0 = (𝑘1𝑤
′ − 𝑎1𝑤𝑝

′)′ + 𝑤(𝑥)

(︂
1− 𝑤(𝑥)

𝑝(𝑥)

)︂
, 𝑤(0) = 𝑤(1), 𝑤′(0) = 𝑤′(1). (21)

В качестве решения задачи (21) при 𝑎𝑖 = 0 берется распределение 𝑤3(𝑥) (16). При
этом функция ресурса 𝑝(𝑥) находится по формуле (15). Далее фиксируются значения
параметров 𝑘1 = 0.03, 𝑘2 = 0.06, 𝑘3 = 0.09, 𝑟1 = 1, 𝑟2 = 2, 𝑟3 = 3 и проводится численный
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эксперимент на установление к стационарному решению на интервале времени [0, 10]
из начальных распределений 𝑢0

𝑖 (𝑥) = 0.1.
На рис. 2 и 3 представлены графики установления стационарных распределений.

Для схемы повышенной точности при 𝑛 = 10 получается решение, близкое к точно-
му (см. рис. 2). При этом схема второго порядка точности дает большие погрешнос-
ти. Результаты сравнения с точным решением приведены в табл. 4. Видно, что ме-
тод четвертого порядка точности позволяет получить на сетке из десяти узлов рас-
пределение, которое находится при 40 узлах на основе схемы PC2. На рис. 3 приве-
дены распределения абсолютной погрешности 𝜀 = 𝑤(𝑥) − 𝑤3(𝑥) для разных 𝑛, здесь
𝑤(𝑥) = 𝑢1(𝑥)+𝑢2(𝑥)+𝑢3(𝑥) — результат численного решения. Полученные распределе-
ния погрешности отвечают неоднородности функции ресурса 𝑝(𝑥).

Далее на рис. 4 представлены результаты расчетов распределений видов, получаю-
щихся для разных начальных условий при учете таксиса: 𝑎1 = 0.02, 𝑎2 = 0.04, 𝑎3 = 0.06.
Распределение ресурса при условиях периодичности задавалось в виде

𝑝(𝑥) = 1− 0.2 sin 2𝜋𝑥+ 0.2 sin 4𝜋𝑥. (22)

Рис. 2. Установление к 𝑤3(0.2, 𝑡) (пунктир) для задач с условиями периодичности при 𝑛 = 10,
20, 40, 80: 1 — решение по схеме второго порядка точности; 2 — решение по компактной схеме
Fig. 2. Convergence to 𝑤3(0.2, 𝑡) (dotted line) for problems with periodicity conditions for 𝑛 = 10,
20, 40, 80: 1 — solution using second-order accuracy scheme; 2 — solution using compact scheme

Рис. 3. Погрешность суммы видов 𝜀 при 𝑡 = 10: пунктир — PC2, сплошная линия — PC4;
𝑛 = 10 (кривая 3), 𝑛 = 20 (1, 4), 𝑛 = 40 (2)
Fig. 3. Error of the sum of species 𝜀 at 𝑡 = 10: dotted line — PC2, solid line — PC4; 𝑛 = 10
(curve 3), 𝑛 = 20 (1, 4), 𝑛 = 40 (2)
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Т а б л и ц а 4. Сходимость и рассчитанный
порядок точности для задачи (17), (18)
Table 4. Convergence and calculated accuracy
order for the problem (17), (18)

ℎ ‖𝑌2 − 𝑤3‖ ‖𝑌4 − 𝑤3‖ 𝜂(PC2) 𝜂(PC4)

0.2 0.170321 0.038979 − −
0.1 0.038878 0.002122 2.1312 4.1995
0.05 0.009466 0.000127 2.0381 4.0609
0.025 0.002351 0.000008 2.0093 4.0153

Т а б л и ц а 5. Вычисление порядка метода
(процесс Эйткена) для системы (17), (18)
Table 5. Computing order (Aitken process) for
the system (17), (18)

𝑎𝑖 (𝑖 = 1, 2, 3) ℎ1 𝜂(РС2) 𝜂(РС4)

0.002𝑖
0.05 2.2663 4.5400
0.025 2.0617 3.9367

0.005𝑖
0.05 2.2629 4.4541
0.025 2.0606 3.5503

а б

Рис. 4. Мультистабильность стационарных решений для разных начальных распределений
𝑢0𝑖 (𝑥) = 0.1 (а) и 𝑢0𝑖 (𝑥) = 0.5 (б ): кривые 1 — 𝑢1(𝑥), 2 — 𝑢2(𝑥), 3 — 𝑢3(𝑥), 4 — 𝑤(𝑥), 5 — 𝑝(𝑥)
Fig. 4. Multistability of stationary solutions for different initial distributions 𝑢0𝑖 (𝑥) = 0.1 (а) and
𝑢0𝑖 (𝑥) = 0.5 (б ): curves 1 — 𝑢1(𝑥), 2 — 𝑢2(𝑥), 3 — 𝑢3(𝑥), 4 — 𝑤(𝑥), 5 — 𝑝(𝑥)

а б

Рис. 5. График зависимости от времени плотностей 𝑢𝑖 (𝑖 = 1, 2, 3) в точке 𝑥 = 0.2 (а) и про-
странственно-временное распределение 𝑢3(𝑥, 𝑡) (б )
Fig. 5. Graph of densities 𝑢𝑖 (𝑖 = 1, 2, 3) versus time at point 𝑥 = 0.2 (а) and space-time distribution
𝑢3(𝑥, 𝑡) (б )

а б

Рис. 6. Порядок точности 𝜂 (а) и норма 𝑆 (б ): схема повышенной точности (сплошная кривая),
схема второго порядка точности (пунктир); кривые 1, 3 — 𝑛𝑖 = 24, 𝑛𝑖−1 = 12; кривые 2, 4 —
𝑛𝑖 = 48, 𝑛𝑖−1 = 24
Fig. 6. Accuracy order 𝜂 (а) and norm 𝑆 (б ): scheme of higher order (solid), second order scheme
(dashed); curves 1, 3 — 𝑛𝑖 = 24, 𝑛𝑖−1 = 12; curves 2, 4 — 𝑛𝑖 = 48, 𝑛𝑖−1 = 24
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В зависимости от начального распределения реализуются различные стационарные
решения 𝑢𝑖(𝑥) и одинаковые суммы видов 𝑤(𝑥) (рис. 4). Это является следствием косим-
метричности задачи, при которой формируется двухпараметрическое семейство равно-
весий.

Пусть 𝑊𝑖 — численное решение, полученное на сетке ℎ𝑖, а ℎ𝑖+1 = ℎ𝑖/2. В табл. 5
приведены результаты расчета порядка точности для двух наборов миграционных па-
раметров 𝑎𝑖 и разных значений шага ℎ𝑖

𝜂𝑖 = log2
𝑆𝑖

𝑆𝑖+1

, 𝑆𝑖 = ‖𝑊𝑖 −𝑊𝑖−1‖.

Видно, что для получения решения в случае схемы PC4 достаточно десяти узлов сетки
при функции ресурса 𝑝(𝑥) с двумя максимумами и минимумами.

При нарушении косимметрии исчезает двухпараметрическое семейство стационар-
ных равновесий. В этом случае возможны сценарии с формированием стационарных
и нестационарных решений. На рис. 5 и 6 представлены результаты вычислительных
экспериментов (1), (2) при 𝑚 = 3, 𝑏𝑖𝑗 = 0 с системой на сетках: 𝑛 = 12, 24, 48. Для
значений параметров: 𝛼12 = 𝛼23 = 𝛼31 = 0.8, 𝛼13 = 1.1, 𝛼21 = 1.2, 𝛼32 = 1.4, 𝑟1 = 𝑟2 = 1,
𝑟3=0.5, 𝑘1= 𝑘2=0.05, 𝑘3=0.02, 𝑎1= 𝑎2=0.005, 𝑎3=0.002 и при распределении ресурса
𝑝(𝑥) (22) получается колебательный режим (рис. 5).

Результаты вычисления порядка точности для разных схем на большом временном
промежутке представлены на рис. 6, а, а норм 𝑆 — на рис. 6, б. Видно, что при существо-
вании колебательного режима компактная схема дает высокую точность в сравнении
со схемой второго порядка.

Заключение

Описана компактная схема для анализа динамики конкурирующих популяций на неод-
нородном ареале. Для дискретизации дифференциальных уравнений в частных про-
изводных с переменными коэффициентами применяется метод конечных разностей со
смещенными сетками. Проведены вычислительные эксперименты для задач об уста-
новлении стационарных распределений популяций на неоднородном ареале и оценены
порядки точности при использовании построенной схемы. Представлены результаты
расчетов колебательных режимов и продемонстрирована эффективность компактной
схемы повышенного порядка точности.
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Abstract

The research is aimed to describe the numerical method for studying population models based
on the reaction – diffusion – advection equations with variable coefficients. It is important to analyze
the impact of directed migration towards a resource on temporal-spatial competition of species.
We apply a method of lines with a staggered grid for discretizing the nonlinear problems with
high order accuracy on three-point stencil in spatial coordinate. To integrate in time, a high-
order Runge –Kutta method is used (ode89 in MATLAB). The scheme was tested using special
problems allowing exact solutions. We carried out calculations of stationary distributions for species
in a heterogeneous environment under various boundary conditions. Numerical estimates of accuracy
orders were obtained using the given scheme and compared with the second order approximation
analogue. We performed a computational experiment to assess the order of approximation with non-
stationary regimes using the Aitken process. Our results demonstrate the effectiveness of a compact
scheme for calculating the dynamics of three species competing in a heterogeneous habitat.
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